EconPapers    
Economics at your fingertips  
 

Economic analysis of a supercritical coal-fired CHP plant integrated with an absorption carbon capture installation

Łukasz Bartela, Anna Skorek-Osikowska and Janusz Kotowicz

Energy, 2014, vol. 64, issue C, 513-523

Abstract: Energy investments in Poland are currently focused on supercritical coal-fired unit technology. It is likely, that in the future, these units are to be integrated with carbon capture and storage (CCS) installations, which enable a significant reduction of greenhouse gas emissions into the atmosphere. A significant share of the energy market in Poland is constituted by coal-fired combined heat and power (CHP) plants. The integration of these units with CCS installation can be economically inefficient. However, the lack of such integration enhances the investment risk due to the possibility of appearing on the market in the near future high prices of emission allowances. The aforementioned factors and additional favorable conditions for the development of cogeneration can cause one to consider investing in large supercritical CHP plants.

Keywords: Combined heat and power; Carbon capture; Absorption method; Economic analysis (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations View citations in EconPapers (7) Track citations by RSS feed

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544213010189
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:64:y:2014:i:c:p:513-523

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Series data maintained by Dana Niculescu ().

 
Page updated 2017-09-29
Handle: RePEc:eee:energy:v:64:y:2014:i:c:p:513-523