Economics at your fingertips  

Progress in polymeric material for hydrogen storage application in middle conditions

R. Pedicini, B. Schiavo, P. Rispoli, A. Saccà, A. Carbone, I. Gatto and E. Passalacqua

Energy, 2014, vol. 64, issue C, 607-614

Abstract: Hydrogen sorption using a manganese oxide anchored to PEEK (Poly(ether-ether-keton)) matrix was studied. The functionalization process and the obtained results on hydrogen storage capability of the synthesized polymer are reported. The functionalised polymer was characterised by Scanning Electron Microscopy, Transmission Electron Microscopy, X-ray diffraction and Volumetric Hydrogen sorption measurements. Different synthesis conditions in terms of precursor concentration and reaction time were used and the direct correlation between manganese oxide percentage and hydrogen storage capability was confirmed. In this way different powders were synthesised. It is assumed that the sample with 78 wt% (SPMnO6) forms a combination of mixed manganese oxides since different reticular planes were observed. On this sample, promising results regarding to hydrogen capability at 110 °C and 60 bar were obtained, in particular 1.1 wt% hydrogen sorption was recorded. Moreover, this value, after about 30 h, remains quite constant. These preliminary results demonstrate the capability of such compound to absorb hydrogen, for this reason further morphological and structural studies are in progress with the aim to better understand the mechanism involving the storage.

Keywords: Manganese oxide synthesis; Chemical–physical characterisation; Hydrogen storage measurements (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations View citations in EconPapers (1) Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Series data maintained by Dana Niculescu ().

Page updated 2017-09-29
Handle: RePEc:eee:energy:v:64:y:2014:i:c:p:607-614