EconPapers    
Economics at your fingertips  
 

Solar–thermal hybridization of advanced zero emissions power cycle

S. Gunasekaran, N.D. Mancini, R. El-Khaja, E.J. Sheu and A. Mitsos

Energy, 2014, vol. 65, issue C, 152-165

Abstract: Four different integration schemes for the Advanced Zero Emissions Power (AZEP) cycle with a parabolic trough are proposed and analyzed: vaporization of high-pressure stream, preheating of high-pressure stream, heating of intermediate-pressure turbine inlet stream, and heating of low-pressure turbine inlet stream. The power outputs from these integration schemes are compared with each other and with the sum of the power outputs from corresponding stand-alone AZEP cycle and solar–thermal cycle. Vaporization of high-pressure stream has the highest power output among the proposed integration schemes. Both the vaporization and heating of intermediate-pressure turbine inlet stream integration schemes have higher power output than the sum of the power outputs from corresponding stand-alone AZEP cycle and solar–thermal cycle. A comparison of the proposed vaporization scheme with existing hybrid technologies without carbon capture and storage (CCS) shows that it has a higher annual incremental solar efficiency than most hybrid technologies. Moreover, it has a higher solar share compared to hybrid technologies with higher incremental efficiency. Hence, AZEP cycles are a promising option to be considered for solar–thermal hybridization.

Keywords: Solar–thermal fossil hybridization; AZEP cycle; Parabolic trough; Carbon capture and sequestration; Oxy-combustion (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544213010785
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:65:y:2014:i:c:p:152-165

DOI: 10.1016/j.energy.2013.12.021

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:65:y:2014:i:c:p:152-165