Aero-acoustics noise evaluation of H-rotor Darrieus wind turbines
M.H. Mohamed
Energy, 2014, vol. 65, issue C, 596-604
Abstract:
The problems aided with wind turbine noise have been one of the more studied environmental influence areas in wind energy engineering. Noise levels can be measured, but, similar to other environmental attentions, the public's perception of the noise impact of wind turbines is in part a subjective determination. The author investigated in this work the aerodynamic acoustics of one type of the VAWT (vertical axis wind turbine) which called Darrieus turbine. Darrieus turbine is suitable to be established within the densely populated city area. Therefore, the noise item is very important to investigate. In this work, Darrieus rotor has been studied numerically and aerodynamically to obtain the generated noise from blades. This work offers a method based on the FW–H (Ffowcs Williams and Hawkings) equations and its integral solutions. Time-accurate solutions can be obtained from URANS (unsteady Reynolds-averaged Navier–Stokes) equations. Blade shape, tip speed ratio and solidity effects have been studied in this work. The results indicated that the higher solidity and higher tip speed ratio rotors are more noisy than the normal turbines.
Keywords: Wind energy; Noise; Darrieus turbine; Aerodynamic; CFD (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (32)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544213009936
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:65:y:2014:i:c:p:596-604
DOI: 10.1016/j.energy.2013.11.031
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().