EconPapers    
Economics at your fingertips  
 

Performance of a hydrokinetic energy system using an axial-flux permanent magnet generator

J.M. Davila-Vilchis and R.S. Mishra

Energy, 2014, vol. 65, issue C, 631-638

Abstract: The high density of water has been an important factor for harnessing kinetic energy from marine current flows, tides, flowing rivers, or other artificial water channels. Thus, new technologies are being developed to generate electricity. A good example is HKES (hydrokinetic energy systems), which are devices that extract and convert energy from the motion of flowing water into electricity. Although these non-polluting machines and/or devices are still in their pilot phases, they have been growing as a sustainable source of new electric power generation. In this paper, the performance of a horizontal hydrokinetic energy system with variable-pitch blades using an axial-flux generator is evaluated. Particularly, very simple sheet blades have been used to keep system cost down. The evaluation is based on maximum power extraction and energy conversion efficiency normalized by system cost through a simpler electro-mechanical design for the hydrokinetic system. Experimental results have demonstrated that the proposed prototype possesses higher efficiency with reduced energy losses and manufacturing costs. It represents a cost-competitive alternative energy for power supply for civilian applications in remote areas or an option for expeditionary applications.

Keywords: Hydrokinetic energy; Variable pitch; Electricity generation; Low-cost blades; Axial-flux generator (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544213010025
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:65:y:2014:i:c:p:631-638

DOI: 10.1016/j.energy.2013.11.040

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:65:y:2014:i:c:p:631-638