EconPapers    
Economics at your fingertips  
 

A new approach for optimum simultaneous multi-DG distributed generation Units placement and sizing based on maximization of system loadability using HPSO (hybrid particle swarm optimization) algorithm

M.M. Aman, G.B. Jasmon, A.H.A. Bakar and H. Mokhlis

Energy, 2014, vol. 66, issue C, 202-215

Abstract: This paper presents a new approach for optimum simultaneous multi-DG (distributed generation) placement and sizing based on maximization of system loadability without violating the system constraints. DG penetration level, line limit and voltage magnitudes are considered as system constraints. HPSO (hybrid particle swarm optimization) algorithm is also proposed in this paper to find the optimum solution considering maximization of system loadability and the corresponding minimum power losses. The proposed method is tested on standard 16-bus, 33-bus and 69-bus radial distribution test systems. This paper will also compare the proposed method with existing Ettehadi method and present the effectiveness of the proposed method in terms of reduction in power system losses, maximization of system loadability and voltage quality improvement.

Keywords: Distributed generation; Reactive power; System loadability; Hybrid particle swarm optimization (HPSO) (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (34)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544213010943
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:66:y:2014:i:c:p:202-215

DOI: 10.1016/j.energy.2013.12.037

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:66:y:2014:i:c:p:202-215