An engineering approach to optimal metallic bipolar plate designs reflecting gas diffusion layer compression effects
Ah-Reum Kim,
Hye-Mi Jung and
Sukkee Um
Energy, 2014, vol. 66, issue C, 50-55
Abstract:
GDL (Gas diffusion layer) intrusion into gas feeding channels narrows the effective channel cross-sectional area and eventually results in performance degradation of PEFCs (polymer electrolyte fuel cells). Therefore, cross-sectional channel design of metallic bipolar plates should be optimized to resolve this problem. In this study, effects of the cross-sectional configuration of metallic gas channels on pressure drops are numerically investigated for the comprehensive fluid dynamic analysis of channel flow. Multi-physics numerical systems combining solid mechanics and fluid dynamics are applied to figure out the GDL behavior. First, static structural analysis is performed to determine elastic deformation of GDLs under clamping forces. Subsequently, computational flow analysis in the deformed regions is conducted to visualize flow patterns and estimate corresponding pressure drops. Four cross-sectional parameters are selected: channel to rib width ratio, draft angle, inner fillet radius and clamping pressure. Results are validated against experimental data. The GDL intrusion is found to be greatly affected by draft angle and channel to rib ratio. Cross-sectional area is reduced down to 45% in the most shrunk channel, leading additional pressure drop of 0.12 bar. It is suggested that fluid dynamics should be combined with solid mechanics for better accuracy in computational fuel cell modeling.
Keywords: Gas diffusion layer compression; Metallic bipolar plates; Optimal design; Polymer electrolyte fuel cells (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544213006841
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:66:y:2014:i:c:p:50-55
DOI: 10.1016/j.energy.2013.08.009
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().