Effect of temperature and dolomite on tar formation during gasification of torrefied biomass in a pressurized fluidized bed
C. Berrueco,
D. Montané,
B. Matas Güell and
G. del Alamo
Energy, 2014, vol. 66, issue C, 849-859
Abstract:
This work investigates the effect of temperature and bed material on the yields and composition of gas and tar produced from gasification of two types of biomass feedstock previously torrefied at 275 °C. Special attention was devoted to the evolution of tar composition under the different experimental conditions. Experiments were conducted in a fluidized bed reactor using two different types of bed material (sand and dolomite) under a constant pressure of 0.5 MPa and at two temperature levels (750 and 850 °C). Tar destruction reactions promoted by the catalyst (dolomite) enhanced the production of some of the gas components (H2, CO2, CO and CH4) whereas C2 hydrocarbons decreased, this effect being slightly more relevant at 850 °C. Comparable trends were observed with increasing temperature, which had a positive effect on cracking reactions and tar destruction. For both feedstocks, the increase in temperature resulted in (i) higher gas yields, and (ii) enhanced char gasification rate. On the other hand the evolution of tar yield and composition revealed a possible competition between two tar reaction pathways during gasification, (i) tar polymerization, and (ii) de-alkylation, dehydration and cracking of tars, depending on the experimental conditions and feedstock used.
Keywords: Biomass; Torrefaction; Fluidized bed reactor; Tar; Steam/O2 gasification (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421301092X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:66:y:2014:i:c:p:849-859
DOI: 10.1016/j.energy.2013.12.035
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().