EconPapers    
Economics at your fingertips  
 

Nano-encapsulated organic phase change material based on copolymer nanocomposites for thermal energy storage

K. Tumirah, M.Z. Hussein, Z. Zulkarnain and R. Rafeadah

Energy, 2014, vol. 66, issue C, 881-890

Abstract: This study deals with fabrication, physico–chemical characterizations and thermal properties of n-octadecane nanocapsules as organic PCM (phase change materials) for TES (thermal energy storage). Nano-encapsulated organic PCM was fabricated by encapsulation of n-octadecane as a core with St (styrene) – MMA (methylmethacrylate) copolymer shell using miniemulsion in-situ polymerization method. The influence of St/MMA and n-octadecane/copolymer mass ratio on the encapsulation processes, physico–chemical and thermal properties of the resulting nanocapsules has been studied systematically. DSC (differential scanning calorimeter) analysis indicated that the n-octadecane in the nanocapsules form melts at 29.5 °C and crystallize at 24.6 °C. N-octadecane nanocapsules has an enthalpy of 107.9 and 104.9 Jg-1 for melting and crystallization, respectively. TGA (thermal gravimetric analysis) thermograms showed that the nano-encapsulated organic PCM degraded in two distinguishable steps and has a good chemical stability. The thermal cycling test of the nanocapsules was carried out for 360 heating/cooling cycles and indicates that the developed nanomaterial has good chemical stability and thermal reliability. Based on all the results obtained, it can be concluded that n-octadecane/St-MMA nanocapsules have potential for thermal energy storage for buildings and other applications.

Keywords: Styrene-methyl methacrylate copolymer shell; NPCM (nano-encapsulated phase change materials); N-octadecane; Miniemulsion in-situ polymerization; TES (thermal energy storage) system (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214000413
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:66:y:2014:i:c:p:881-890

DOI: 10.1016/j.energy.2014.01.033

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:66:y:2014:i:c:p:881-890