Possible pathways for dealing with Japan's post-Fukushima challenge and achieving CO2 emission reduction targets in 2030
Xuanming Su,
Weisheng Zhou,
Faming Sun and
Ken'Ichi Nakagami
Energy, 2014, vol. 66, issue C, 90-97
Abstract:
Considering the unclear nuclear future of Japan after Fukushima Dai-ichi nuclear power plant accident since Mar. 11, 2011, this study assesses a series of energy consumption scenarios including the reference scenario, nuclear limited scenarios and current nuclear use level scenario for Japan in 2030 by the G-CEEP (Glocal Century Energy Environment Planning) model. The simulation result for each scenario is firstly presented in terms of primary energy consumption, electricity generation, CO2 emission, marginal abatement cost and GDP (gross domestic product) loss. According to the results, energy saving contributes the biggest share in total CO2 emission reduction, regardless of different nuclear use levels and different CO2 emission reduction levels. A certain amount of coal generation can be retained in the nuclear limited scenarios due to the applying of CCS (carbon capture and storage). The discussion indicates that Japan needs to improve energy use efficiency, increase renewable energy and introduce CCS in order to reduce the dependence on nuclear power and to achieve CO2 emission reduction target in 2030. In addition, it is ambitious for Japan to achieve the zero nuclear scenario with 30% CO2 emission reduction which will cause a marginal abatement cost of 383 USD/tC and up to −2.54% GDP loss from the reference scenario. Dealing with the nuclear power issue, Japan is faced with a challenge as well as an opportunity.
Keywords: CO2 emission; Nuclear; CCS (carbon capture and storage); Renewable energy; Japan (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214001352
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:66:y:2014:i:c:p:90-97
DOI: 10.1016/j.energy.2014.02.002
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().