Investigation of hydrofluoroolefins as potential working fluids in organic Rankine cycle for geothermal power generation
Wei Liu,
Dominik Meinel,
Christoph Wieland and
Hartmut Spliethoff
Energy, 2014, vol. 67, issue C, 106-116
Abstract:
Recently, HFOs (hydrofluoroolefins) are presented as a group of the fourth generation refrigerants with zero ODP (Ozone Depletion Potential) and a very low GWP (Global Warming Potential). This paper presents a study on eight different HFOs and their potential applications in ORC (Organic Rankine Cycle) for geothermal power generation. The thermodynamic properties are calculated based on Peng–Robinson equation of state, and are used for simulating a standard ORC for geothermal heat sources with different temperatures. System efficiency, which involves both heat transfer efficiency and thermal efficiency, is considered to be the main criterion to evaluate the ORC system performance. An innovative term, i.e. the optimal heat source temperature is proposed for the determination of thermodynamic performances of each investigated working fluid in combination with the pinch point analysis. Based on the system efficiencies of all HFOs, some of them are selected in a series of case studies for comparison with other relevant ORC fluids. As a conclusion, some of the presented HFOs show promising performances in terms of system efficiency especially for low-to medium temperature geothermal ORC power generation (120 °C ≤ ths ≤ 150 °C).
Keywords: Hydrofluoroolefins; Geothermal ORC power generation; System efficiency; Optimal heat source temperature; Global warming potential (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544213010517
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:67:y:2014:i:c:p:106-116
DOI: 10.1016/j.energy.2013.11.081
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().