Three accounts for regional carbon emissions from both fossil energy consumption and industrial process
Huijuan Dong,
Yong Geng,
Tsuyoshi Fujita and
David A. Jacques
Energy, 2014, vol. 67, issue C, 276-283
Abstract:
In this paper, we classify the carbon emission inventories into three perspectives through a case study in Beijing: territory account (TA), production account (PA) and consumption account (CA). A single-regional–input–output (SRIO) method was used to calculate production account and consumption account with a traditional competitive input–output (IO) table. Results show that both TA and PA have the same final values, but disparity exists at the sectoral distribution level. Both PA and CA increased from 2000 to 2007, but CA was bigger than PA and increased faster than PA. This indicates that Beijing was a carbon importer with an increasing trend. Sectoral analysis shows that “melting and pressing of metals (14)”, “Nonmetal mineral products (13)” and “Petroleum processing, coking, and nuclear fuel processing (11)” have higher direct carbon emissions from production perspective (TA), whilst “Construction” and “Service” sectors have higher emissions from consumption perspective (PA and TA). High embodied emission sectors in PA/TA, particularly the “Construction” sector, deserve more attentions for carbon emission mitigation.
Keywords: Territory emission; Production account; Consumption account; Input–output analysis (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214000875
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:67:y:2014:i:c:p:276-283
DOI: 10.1016/j.energy.2014.01.065
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().