EconPapers    
Economics at your fingertips  
 

Improved gravitational search algorithm for unit commitment considering uncertainty of wind power

Bin Ji, Xiaohui Yuan, Zhihuan Chen and Hao Tian

Energy, 2014, vol. 67, issue C, 52-62

Abstract: With increasing wind farm integrations, unit commitment (UC) is more difficult to solve because of the intermittent and fluctuation nature of wind power. In this paper, scenario generation and reduction technique is applied to simulate the impacts of its uncertainty on system operation. And then a model of thermal UC problem with wind power integration (UCW) is established. Combination of quantum-inspired binary gravitational search algorithm (GSA) and scenario analysis method is proposed to solve UCW problem. Meanwhile, heuristic search strategies are used to handle the constraints of thermal unit for each scenario. In addition, a priority list of thermal units based on the weight between average full-load cost and maximal power output is utilized during the optimization process. Moreover, two UC test systems with and without wind power integration are used to verify the feasibility and effectiveness of the proposed method as well as the performance of the algorithm. The results are analyzed in detail, which demonstrate the model and the proposed method is practicable. The comparison with other methods clearly shows that the proposed method has higher efficiency for solving UC problems with and even without wind farm integration.

Keywords: Wind power; Unit Commitment; Scenario analysis; Quantum-inspired binary gravitational search algorithm; Heuristic strategy (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (45)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214001479
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:67:y:2014:i:c:p:52-62

DOI: 10.1016/j.energy.2014.02.014

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:67:y:2014:i:c:p:52-62