EconPapers    
Economics at your fingertips  
 

Homogeneous catalysis of soybean oil transesterification via methylic and ethylic routes: Multivariate comparison

Karen Araújo Borges, André Luiz Squissato, Douglas Queiroz Santos, Waldomiro Borges Neto, Antônio Carlos Ferreira Batista, Tiago Almeida Silva, Andressa Tironi Vieira, Marcelo Firmino de Oliveira and Manuel Gonzalo Hernández-Terrones

Energy, 2014, vol. 67, issue C, 569-574

Abstract: An experiment to establish the best reaction conditions for the transesterification of soybean oil is described. We conducted the ethylic and methylic routes using two different protocols, and evaluated how the variables time, stirring, alcohol/oil molar ratio, catalyst (%), catalyst type, and temperature affected the process. The highest yield of biodiesel was obtained using the following conditions: ethylic route – t = 60 min, stirring: 100 rpm, ethanol/oil molar ratio = 12:1, catalyst relative to oil (%) = 0.2%, catalyst = potassium ethoxide, temperature = 35 °C; methylic route – t = 30 min, stirring: 100 rpm, methanol/oil molar ratio = 6:1, catalyst (%) = 0.2%, catalyst = KOH, temperature = 55 °C. We analyzed the acidity, moisture content, density at 20 °C, kinematic viscosity at 40 °C, oxidative stability, and carbon residue at the biodiesels obtained under optimal conditions. The results were consistent with the values allowed by the Brazilian ANP (Resolution 07/2008). We also conducted the physicochemical analysis of the soybean oil used as feedstock to produce biodiesel.

Keywords: Transesterification; Soybean oil; Optimization; Biodiesel (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214001455
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:67:y:2014:i:c:p:569-574

DOI: 10.1016/j.energy.2014.02.012

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:67:y:2014:i:c:p:569-574