EconPapers    
Economics at your fingertips  
 

Performance investigation of a solar heating system with underground seasonal energy storage for greenhouse application

J. Xu, Y. Li, R.Z. Wang and W. Liu

Energy, 2014, vol. 67, issue C, 63-73

Abstract: This study reports the performance of a demonstrated 2304 m2 solar-heated greenhouse equipped with a seasonal thermal energy storage system in Shanghai, east China. This energy storage system utilises 4970 m3 of underground soil to store the heat captured by a 500 m2 solar collector in non-heating seasons through U-tube heat exchangers. During heating seasons, thermal energy is delivered by the heat exchange tubes placed on the plants shelves and the bare soil. The system can operate without a heat pump, which can save electricity consumption and further enhance the solar fraction. It was found that in the first operation year, 331.9 GJ was charged, and 208.9 GJ was later extracted for greenhouse space heating. No auxiliary heating equipment was installed so that solar energy covered all the heating loads directly or indirectly. It was demonstrated that this system was capable of maintaining an interior air temperature that was 13 °C higher than the ambient value when the latter temperature was −2 °C at night. The ECOP (electrical coefficient of performance) of the first operation year was approximately 8.7, indicating a better performance than the common heat pump heating system.

Keywords: Seasonal heat storage; Underground thermal energy storage; Solar energy; Greenhouse; Space heating (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (33)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214000577
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:67:y:2014:i:c:p:63-73

DOI: 10.1016/j.energy.2014.01.049

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:67:y:2014:i:c:p:63-73