Association between energy use and poor visibility in Hong Kong SAR, China
Wai Ming To
Energy, 2014, vol. 68, issue C, 12-20
Abstract:
A city's reliance on energy increases when it is developed. Moreover, the combustion of fossil fuels inevitably generates air pollutants including carbon dioxide, nitrogen oxides, sulfur dioxide, particulate matter, and others. Combining with other anthropogenic air pollutants, visibility in many Asian cities including Hong Kong have deteriorated rapidly in the past decades. This paper explores the relationships between energy use, meteorological factors, and change in visibility in Hong Kong using long-term time-series data. The total use of primary energy increased from 146,700 TJ in 1971 to 1,270,865 TJ in 2011 while the number of hours of reduced visibility increased from 184 h to 1398 h during the same period of time. Bivariate correlations show that poor visibility was significantly associated with energy use and annual mean air temperature. Multiple regression analysis indicates that the burning of aviation gasoline significantly, adversely affect visibility. Results illustrate that the number of clear days in Hong Kong will decrease, in particular due to the increase in air traffic.
Keywords: Energy use; Fuel consumption; Visibility; Long-term time-series; Aviation (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214001960
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:68:y:2014:i:c:p:12-20
DOI: 10.1016/j.energy.2014.02.062
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().