EconPapers    
Economics at your fingertips  
 

Analysis of PEM (Polymer Electrolyte Membrane) fuel cell cathode two-dimensional modeling

M. Abdollahzadeh, J.C. Pascoa, A.A. Ranjbar and Q. Esmaili

Energy, 2014, vol. 68, issue C, 478-494

Abstract: The performance of PEMFC (Polymer Electrolyte Membrane Fuel Cells) with different configuration of gas feeding channels is investigated. Multi-component mixture model is used in order to simulate the two phase flow and transport in cathode gas diffusion layer of PEM fuel cell. This model reduces the numerical simulation complexity by reducing the number of nonlinear governing equations. A wide detailed parametric study is done to investigate different operational parameter such as; pressure difference, operating temperature, different geometrical parameters such as; gas diffusion layer thickness, and various material parameters such as porosity and wettability. Computational simulations have been conducted and the simulation results were compared with the available results in literature and showed very little difference. Results have been presented with different polarization curves, power density and local current density curves and also the plots of saturation level at catalyst layer surface. Furthermore the changes in the place of the interface between single and two phase zones is presented for further understating of the effects of different parameters. This parametric study confirms qualitatively to the validity of the considered model for systematic simulation of the PEM fuel cells.

Keywords: Two phase flow; Multi-component mixture model; Flooding; Interdigitated flow field (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214000978
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:68:y:2014:i:c:p:478-494

DOI: 10.1016/j.energy.2014.01.075

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:68:y:2014:i:c:p:478-494