EconPapers    
Economics at your fingertips  
 

Experimental evaluation of a prototype thermoelectric system integrated with PCM (phase change material) for space cooling

Dongliang Zhao and Gang Tan

Energy, 2014, vol. 68, issue C, 658-666

Abstract: A prototype thermoelectric system integrated with PCM (phase change material) heat storage unit for space cooling has been introduced in this work. The PCM heat storage functions as cooling source and carries, partially at least, the cooling load during cooling operation. A simplified analytical model for the thermoelectric module has been adopted to investigate the theoretical performance characteristics of the modules. The experimental test in a reduced-scale chamber has achieved 7 °C temperature difference between “indoor” and “outdoor” environments and realized an average cooling COP (coefficient of performance) of 0.87 for the thermoelectric cooling system, with the maximum cooling COP of 1.22. Another comparison test for efficacy of PCM heat storage unit shows that 35.3% electrical energy has been saved from using PCM heat storage. During PCM charging (melting) process, natural convection has been observed playing a key effect factor of heat transfer in PCM.

Keywords: Thermoelectric cooling; PCM; Heat storage; COP; Energy saving (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214001121
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:68:y:2014:i:c:p:658-666

DOI: 10.1016/j.energy.2014.01.090

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:68:y:2014:i:c:p:658-666