Thermoeconomic multi-objective optimization of a novel biomass-based integrated energy system
Pouria Ahmadi,
Ibrahim Dincer and
Marc A. Rosen
Energy, 2014, vol. 68, issue C, 958-970
Abstract:
Both thermoeconomic modeling and multi-objective optimization studies are undertaken for a novel integrated multigeneration system, containing a biomass combustor, an organic Rankine cycle to produce electricity, a double-effect absorption chiller for cooling, a heat exchanger, a proton exchange membrane electrolyzer to produce hydrogen, a domestic water heater to produce hot water and a reverse osmosis desalination unit to produce fresh water. Energy and exergy analyses and an environmental impact assessment are included. A multi-objective optimization method based on a fast and elitist NSGA-II (non-dominated sorting genetic algorithm) is developed and employed to determine the best design parameters for the system. The two objective functions utilized in the optimization study are the total cost rate of the system, which is the cost associated with fuel, component purchasing and environmental impact, and the system exergy efficiency. The total cost rate of the system is minimized while the cycle exergy efficiency is maximized using an evolutionary algorithm. To provide insight, the Pareto frontier is shown for a multi-objective optimization. In addition, a closed form equation for the relationship between exergy efficiency and total cost rate is derived. A sensitivity analysis is performed to assess the effects of several design parameters on the system total exergy destruction rate, CO2 emission and exergy efficiency.
Keywords: Energy; Exergy; Efficiency; Biomass; Integrated system; Optimization (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (46)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214001078
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:68:y:2014:i:c:p:958-970
DOI: 10.1016/j.energy.2014.01.085
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).