Simultaneous microwave extraction and synthesis of fatty acid methyl ester from the oleaginous yeast Rhodotorula glutinis
Christopher J. Chuck,
Daniel Lou-Hing,
Rebecca Dean,
Lisa A. Sargeant,
Rod J. Scott and
Rhodri W. Jenkins
Energy, 2014, vol. 69, issue C, 446-454
Abstract:
Microbial lipids have the potential to substantially reduce the use of liquid fossil fuels, though one obstacle is the energy costs associated with the extraction and subsequent conversion into a biofuel. Here we report a one-step method to produce FAME (fatty acid methyl esters) from Rhodotorula glutinis by combining lipid extraction in a microwave reactor with acid-catalysed transesterification. The microwave did not alter the FAME profile and over 99% of the lipid was esterified when using 25 wt% H2SO4 over 20 min at 120 °C. On using higher loadings of catalyst, similar yields were achieved over 30 s. Equivalent amounts of FAME were recovered in 30 s using this method as with a 4 h Soxhlet extraction, run with the same solvent system. When water was present at less than a 1:1 ratio with methanol, the main product was FAME, above this the major products were FFA (free fatty acids). Under the best conditions, the energy required for the microwave was less than 20% of the energy content of the biodiesel produced. Increasing the temperature did not change the EROI (energy return on investment) substantially; however, longer reaction times used an equivalent amount of energy to the total energy content of the biodiesel.
Keywords: Microwave; Extraction; Yeast; Biodiesel; Biofuel; Catalysis (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214003004
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:69:y:2014:i:c:p:446-454
DOI: 10.1016/j.energy.2014.03.036
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().