A new waste heat district heating system with combined heat and power (CHP) based on ejector heat exchangers and absorption heat pumps
Fangtian Sun,
Lin Fu,
Jian Sun and
Shigang Zhang
Energy, 2014, vol. 69, issue C, 516-524
Abstract:
A new waste heat district heating system with CHP based on ejector heat exchangers and absorption heat pumps (DH-EHE) is presented to decrease heating energy consumption of existing CHP systems by recovering waste heat of exhausted steam from a steam turbine, which could also increase heat transmission capacity of the primary heating network (PHN) by decreasing temperature of the return water of existing PHN. A new ejector heat exchanger based on ejector refrigeration cycle is invented to decrease temperature of the return water of PHN to 30 °C under the designed case. DH-EHE is analyzed in terms of laws of thermodynamics and economics. Compared to conventional district heating systems with CHP (CDH), DH-EHE can decrease consumption of steam extracted from a steam turbine by 41.4% and increase heat transmission capacity of the existing PHN by 66.7% without changing the flow rate of circulating water. The heating cost of DH-EHE is 8.62 ¥/GJ less than that of CDH. Compared to CDH, the recovery period of additional investment of DH-EHE is about two years. DH-EHE shows better economic and environmental benefits, which is promising for both district heating systems for long-distance heat transmission and waste heat district heating systems.
Keywords: Ejector heat exchanger; Waste heat recovery; District heating; Absorption heat pump; Pollutant emission reduction (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (34)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214003089
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:69:y:2014:i:c:p:516-524
DOI: 10.1016/j.energy.2014.03.044
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().