Multi-channel heat exchanger-reactor using arborescent distributors: A characterization study of fluid distribution, heat exchange performance and exothermic reaction
Xiaofeng Guo,
Yilin Fan and
Lingai Luo
Energy, 2014, vol. 69, issue C, 728-741
Abstract:
A multi-functional heat exchanger-reactor comprising arborescent (tree-like) distributors and collector, 16 mini-channels in parallel and T-mixers is introduced in this paper. Flow distribution property, pressure drop and heat exchange performance of proposed heat exchanger-reactor are tested and discussed. Firstly, flow distribution uniformity is characterized by CFD simulation and then qualitatively confirmed by visualization experiment. Results show that for total flowrates ranging from 5 mL s−1 to 20 mL s−1, good distribution uniformity is obtained, with maximum flowrate deviation less than 10%. Then, experiments of heat exchange between hot and cold water are carried out. High values of overall heat transfer coefficient ranging from 2000 to 5000 W m−2 °C−1 are obtained under our working conditions. The volumetric heat exchange capability (UA/V) is found to be around 200 kW m−3 °C−1, showing a high heat exchange capability with compact design. The roles of end-effect and non-established flow are discussed and are supposed to be responsible for efficient heat transfer. Finally a typical fast exothermic reaction, neutralization between acid and basic solutions, is carried out to test the thermal control capability of the studied heat exchanger-reactor. Results indicate that isothermal condition could be realized by circulating appropriate flowrate of coolant through the heat exchanger.
Keywords: Multi-channel; Multifunctional heat exchanger-reactor; Arborescent structure; Fluid distribution; Heat exchange performance; Thermal control (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214003338
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:69:y:2014:i:c:p:728-741
DOI: 10.1016/j.energy.2014.03.069
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().