Two-stage air gasification of mixed plastic waste: Olivine as the bed material and effects of various additives and a nickel-plated distributor on the tar removal
Min-Hwan Cho,
Tae-Young Mun,
Young-Kon Choi and
Joo-Sik Kim
Energy, 2014, vol. 70, issue C, 128-134
Abstract:
Air gasification of mixed plastic waste was conducted in a two-stage gasifier. The effects of the combination of olivine as the fluidized bed material and activated carbon with or without other additives for tar cracking, as well as a Ni-plated distributor, the use of steam as a gasifying agent, and the calcination of olivine on the producer gas compositions and tar production, were also investigated. The maximum H2 concentration (27.3 vol%) was obtained with 900 g of activated carbon in the tar-cracking zone, and through the use of calcined olivine as the bed material. In the experiments, the maximum tar removal efficiency calculated using a base case reached 98.2%. The LHVs of the producer gases were in the range of 6.1–9.0 MJ/Nm3. The increase in the activated carbon amount led to an enhanced H2 production, as well as a decrease in tar production. The Ni-plated distributor was found to be effective for tar removal. In the application of dolomite in the tar-cracking zone and the use of steam as a fluidizing medium resulted in a high rate of HCl removal. The minimum HCl concentration in the producer gases was under 1 ppm.
Keywords: Mixed plastic waste; Two-stage gasifier; Tar removal; Olivine; Calcined dolomite; Activated carbon (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214003612
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:70:y:2014:i:c:p:128-134
DOI: 10.1016/j.energy.2014.03.097
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().