EconPapers    
Economics at your fingertips  
 

Thermo-economic triple-objective optimization of a solar chimney power plant using genetic algorithms

Ehsan Gholamalizadeh and Man-Hoe Kim

Energy, 2014, vol. 70, issue C, 204-211

Abstract: A triple-objective design method was developed for a solar chimney power plant system that simultaneously optimizes the expenditure, total efficiency, and power output. A multi-objective genetic algorithm was used to obtain the best combination of geometric parameters of the power plant. The following design parameters were selected: collector radius, chimney height, and chimney diameter. Two different solar chimney power plant configurations were considered: the Kerman pilot power plant and Manzanares prototype power plant. A set of possible optimal solutions (Pareto optimal set) was obtained. Based on the optimal solutions, the best configuration for each power plant was selected. The performance and expenditure of the optimal solutions and the built power plants were compared. The results showed that the increment of the power output was higher than the increment of the expenditure in the optimal configuration. A parametric study was conducted to evaluate the effects of changing design parameters on different objective functions. This paper provides a very useful design and optimization methodology for solar chimney power plant systems.

Keywords: Solar chimney power plant; Renewable energy; Thermo-economic analysis; Optimization; Multi-objective genetic algorithm (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421400379X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:70:y:2014:i:c:p:204-211

DOI: 10.1016/j.energy.2014.03.115

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:70:y:2014:i:c:p:204-211