EconPapers    
Economics at your fingertips  
 

Cascaded multilevel converter based superconducting magnetic energy storage system for frequency control

Mohammad Farhadi Kangarlu and Mohammad Reza Alizadeh Pahlavani

Energy, 2014, vol. 70, issue C, 504-513

Abstract: The Super conducting magnetic energy storage (SMES), owing to high energy density and capacity, has been widely applied in different stages of power systems. One of these applications is the frequency control of the electric power systems. Frequency of a power system depends on the balance of produced and demanded energy in any instant of time. Subsequent to a sudden change in the system, which causes produced and demanded energy mismatch, frequency oscillates. According to standards, the permissible variation band of the frequency is very restricted. Larger swings of frequency may result in instability and undesirable trips. As a result, suitable frequency control mechanisms should be implemented in the system. SMES is well-suited for this application because of high energy density and fast response. SMES is attached to system by a power conditioning system (PCS) which include power electronic converters, mainly a dc–dc chopper and an inverter. This paper, studies the application of a cascaded H-bridge (CHB) multilevel converter for frequency control. As far as the authors' knowledge, such a study has not been done before. The design procedure of the converter is presented. Simulation results on a sample system are presented to verify the performance of the proposed PCS.

Keywords: Energy mismatch; Frequency control; SMES; Multilevel converter (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214004381
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:70:y:2014:i:c:p:504-513

DOI: 10.1016/j.energy.2014.04.025

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:70:y:2014:i:c:p:504-513