Enhanced kinetics for the clathrate process in a fixed bed reactor in the presence of liquid promoters for pre-combustion carbon dioxide capture
Ponnivalavan Babu,
Chie Yin Ho,
Rajnish Kumar and
Praveen Linga
Energy, 2014, vol. 70, issue C, 664-673
Abstract:
In this work, we present enhanced kinetics of hydrate formation for the clathrate process in the presence of two liquid promoters namely THF (tetrahydrofuran) and TBAB (tetra-n-butyl ammonium bromide) in a FBR (fixed bed reactor) for pre-combustion capture of CO2. Silica sand was used as a medium to capture CO2 from CO2/H2 gas mixture by hydrate crystallisation. Experiments were performed at different temperatures (274.2 K and 279.2 K) and 6.0 MPa to determine the total gas uptake, induction time and rate of hydrate formation. The observed trends indicated that higher driving force resulted in higher gas consumption and significantly reduced induction time. For the same driving force, higher gas consumption and shorter induction time was achieved by THF as compared to TBAB. 5.53 mol% THF attained higher gas consumption than 1.0 mol% THF whereas 3.0 mol% TBAB attained lower gas consumption than 0.3 mol% TBAB. A highest gas uptake of 51.95 (±5.183) mmol of gas/mol of water and a highest rate of 51.21(±8.91) mol.min−1.m−3 were obtained for 5.53 mol% THF at 6.0 MPa and 279.2 K. Overall, this study indicated better hydrate formation kinetics with the use of THF in an FBR configuration for CO2 capture from a fuel gas mixture.
Keywords: Gas hydrates; Fixed bed reactor; Pre-combustion capture; Carbon dioxide capture; Clathrate process; Promoters (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214004666
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:70:y:2014:i:c:p:664-673
DOI: 10.1016/j.energy.2014.04.053
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().