A dynamic power management strategy of a grid connected hybrid generation system using wind, photovoltaic and Flywheel Energy Storage System in residential applications
Ghada Boukettaya and
Lotfi Krichen
Energy, 2014, vol. 71, issue C, 148-159
Abstract:
A global supervisory strategy for a micro-grid power generation system that comprises wind and photovoltaic generation subsystems, a flywheel storage system, and domestic loads connected both to the hybrid power generators and to the grid, is developed in this paper. The objectives of the supervisor control are, firstly, to satisfy in most cases the load power demand and, secondly, to check storage and grid constraints to prevent blackout, to reduce energy costs and greenhouse gas emissions, and to extend the life of the flywheel. For these purposes, the supervisor determines online the operation mode of the different generation subsystems, switching from maximum power conversion to power regulation. Decision criteria for the supervisor based on actual variables are presented. Finally, the performance of the supervisor is extensively assessed through computer simulation using a comprehensive nonlinear model of the studied system.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214004526
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:71:y:2014:i:c:p:148-159
DOI: 10.1016/j.energy.2014.04.039
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().