Multi-objective and multi-parameter optimization of a thermoelectric generator module
Jing-Hui Meng,
Xin-Xin Zhang and
Xiao-Dong Wang
Energy, 2014, vol. 71, issue C, 367-376
Abstract:
A multi-objective and multi-parameter optimization is implemented to design the optimal structure of bismuth-telluride-based TEG (thermoelectric generator) module. A multi-physics TEG model combining the SCG (simplified conjugate-gradient) algorithm is used as the optimization tool. The semiconductor pair number, leg length, and base area ratio of semiconductor columns to TEG module significantly affect the TEG performance, and hence are all incorporated into the present optimization study. A single-objective optimization is first implemented to provide input parameters for the multi-objective optimization. The results show that when taking the output power as the single-objective function, the output power can be elevated significantly by optimization of the three geometric parameters but which also accompanies the significant reduction in the conversion efficiency. The same result also occurs when taking the conversion efficiency as the single-objective function. By combining the output power and conversion efficiency with a weight factor as the multi-objective function, the optimization is again implemented. The optimal design obtained by multi-objective optimization makes a proper balance between the output power and conversion efficiency, so that the both are improved simultaneously.
Keywords: Thermoelectric generator; Output power; Conversion efficiency; Multi-objective and multi-parameter optimization (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (27)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214004952
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:71:y:2014:i:c:p:367-376
DOI: 10.1016/j.energy.2014.04.082
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().