Thermal characterization of oil palm fiber and eucalyptus in torrefaction
Wei-Hsin Chen,
Po-Chih Kuo,
Shih-Hsien Liu and
Wei Wu
Energy, 2014, vol. 71, issue C, 40-48
Abstract:
Thermal behavior of biomass in torrefaction plays an important role in the operation of pretreatment. To understand the endothermic and/or exothermic characteristics of biomass in the course of torrefaction, an experimental system is conducted and two kinds of biomass (oil palm fiber and eucalyptus) are investigated. The results indicate that the thermal behavior is significantly influenced by the lignocellulosic composition in biomass and the torrefaction temperature. The thermal decomposition of hemicellulose is the dominant mechanism for oil palm fiber torrefied at 200 and 250 °C, whereas the thermal degradation of cellulose is crucial when the biomass is torrefied at 300 °C. Therefore, the heat of reaction of oil palm fiber increases with increasing torrefaction temperature. The torrefaction of eucalyptus is always endothermic, as a consequence of high cellulose contained in the biomass. It is less endothermic when the torrefaction temperature increases, presumably due to the char formation from cellulose thermal degradation and the exothermic lignin decomposition. As a whole, the values of the heat of reaction of the two samples are between −3.50 and 2.23 MJ/kg. The obtained results have provided a useful insight into the control of torrefaction operation and the design of torrefaction reactor.
Keywords: Biomass; Torrefaction; Thermal behavior; Endothermic and exothermic reactions; Heat of reaction; Char formation (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214003983
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:71:y:2014:i:c:p:40-48
DOI: 10.1016/j.energy.2014.03.117
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().