A numerical and experimental approach to the estimation of borehole thermal resistance in ground heat exchangers
Seok Yoon,
Seung-Rae Lee and
Gyu-Hyun Go
Energy, 2014, vol. 71, issue C, 547-555
Abstract:
This paper presents a numerical and experimental study on the evaluation of borehole thermal resistance with TRT (thermal response test) and TPT (thermal performance test) results observed in closed-loop vertical type boreholes with U and W type GHEs (ground heat exchangers). Field TRTs were carried out for 48 h on a closed-loop vertical type borehole, and an equivalent ground thermal conductivity was estimated using the infinite line source model. Closed-loop vertical type boreholes with U and W type GHEs and field ground conditions were numerically modeled using a three dimensional finite element method to estimate borehole thermal resistance and the TRT results were compared. Field TPTs were also conducted for 100 h continuously to calculate the heat exchange rate and borehole thermal resistance. The borehole thermal resistance values were compared with various analytical solutions, and the multipole and EQD (equivalent diameter) method produced results closer to those of the experimental and numerical analysis than the SF (shape factor) method.
Keywords: Ground thermal conductivity; Borehole thermal resistance; Thermal response test; Thermal performance test; Multipole method (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214005350
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:71:y:2014:i:c:p:547-555
DOI: 10.1016/j.energy.2014.04.104
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().