Prediction of biomass-generated syngas using extents of major reactions in a continuous stirred-tank reactor
Ashokkumar M. Sharma,
Ajay Kumar,
Sundararajan Madihally,
James R. Whiteley and
Raymond L. Huhnke
Energy, 2014, vol. 72, issue C, 222-232
Abstract:
Syngas, the main gasification product, is a well-known intermediate for making fuels, chemicals and power. The objective of this study was to develop and validate reaction kinetics-based gasification model using extents of major reactions in a CSTR (continuous stirred-tank reactor) to predict syngas composition and yield. The model was studied by varying biomass and air flowrates from 2.9 to 4.2 drykg/h and 4.5–10kg/h, respectively, with temperature from 801 to 907°C. Results showed significant improvement in the predictions of syngas composition and yield, and gasification efficiency. The extents of gasification reactions indicated that at ERs (equivalence ratios) below 0.32, the water gas reaction contributed the most to the syngas CO and H2 yields. The char oxidation reaction was also the dominating reaction contributing to CO yield at ERs below 0.40. At ERs above 0.29, the Boudouard and methane oxidation reactions were the most dominating reactions contributing to the CO yield while the water gas shift reaction contributed to the H2 yield. The developed model corrected one of the key underlying assumptions that biomass decomposes into elemental forms (C, H, O, N and S), however, gasification temperature, carbon conversion efficiency and tar yield were assumed to be given.
Keywords: Biomass gasification; Syngas; Kinetics; Gibbs equilibrium; Extent of reaction (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214005763
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:72:y:2014:i:c:p:222-232
DOI: 10.1016/j.energy.2014.05.027
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().