EconPapers    
Economics at your fingertips  
 

A three-dimensional transient model for EGS subsurface thermo-hydraulic process

Fangming Jiang, Jiliang Chen, Wenbo Huang and Liang Luo

Energy, 2014, vol. 72, issue C, 300-310

Abstract: Understanding the subsurface thermo-hydraulic process in enhanced or engineered geothermal systems (EGS) is crucial to the efficiency of heat extraction and the sustainable utilization of geothermal reservoir. We present in detail a three-dimensional transient model for the study of subsurface thermo-hydraulic process during EGS heat extraction and demonstrate its capability through test simulations. Since this model considers the actual existence of local thermal non-equilibrium between rock matrix and fluid flowing in the porous heat reservoir during EGS heat extraction, the model results shed light on the local heat exchange in the reservoir. One other salient feature of this model is its capability of simulating the complete subsurface thermo-hydraulic process during EGS heat extraction, not only the thermo-flow in the reservoir and well boreholes, but also the heat conduction or transport in rocks enclosing the reservoir. The results obtained from the test simulations, though the considered reservoir is imaginary and homogeneously fractured, corroborate the capability and validity of the present model. Moreover, the model results from the specially designed triplet well EGS case indicate its superior heat extraction performance.

Keywords: Hot dry rock technology; Enhanced or engineered geothermal systems; Local thermal non-equilibrium; Numerical model; Porous heat reservoir (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (42)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214006045
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:72:y:2014:i:c:p:300-310

DOI: 10.1016/j.energy.2014.05.038

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:72:y:2014:i:c:p:300-310