Exergy analysis of gas turbine with air bottoming cycle
M. Ghazikhani,
I. Khazaee and
E. Abdekhodaie
Energy, 2014, vol. 72, issue C, 599-607
Abstract:
In this paper, the exergy analysis of a conventional gas turbine and a gas turbine with air bottoming cycle (ABC) is presented in order to study the important parameters involved in improving the performance characteristics of the ABC based on the Second Law of thermodynamics. In this study, work output, specific fuel consumption (SFC) and the exergy destruction of the components are investigated using a computer model. The variations of the ABC cycle exergy parameters are comprehensively discussed and compared with those of the simple gas turbine. The results indicate that the amount of the exhaust exergy recovery in different operating conditions varies between 8.6 and 14.1% of the fuel exergy, while the exergy destruction due to the extra components in the ABC makes up only 4.7–7.4% of the fuel exergy. This is the reason why the SFC of the ABC is averagely 13.3% less and the specific work 15.4% more than those of the simple gas turbine. The results also reveal that in the ABC cycle, at a small value of pressure ratio, a higher specific work with lower SFC can be achieved in comparison with those of the simple gas turbine.
Keywords: Gas turbine; Air bottoming cycle; Exergy; Specific work; Specific fuel consumption (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214006525
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:72:y:2014:i:c:p:599-607
DOI: 10.1016/j.energy.2014.05.085
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().