EconPapers    
Economics at your fingertips  
 

A novel adaptive blade concept for large-scale wind turbines. Part I: Aeroelastic behaviour

M. Capuzzi, A. Pirrera and P.M. Weaver

Energy, 2014, vol. 73, issue C, 15-24

Abstract: This two-part paper introduces a novel aeroelastic approach to the design of large-scale wind turbine blades. By suitably tailoring the blade's elastic response to aerodynamic pressure, the turbine's Annual Energy Production is shown to increase, while simultaneously alleviating extreme loading conditions due to gusts. In Part I, we use a current blade as the baseline for an aerodynamic analysis aimed at maximising the turbine's yielded power. These results are then used to identify ideal aeroelastic behaviour. In Part II, we exploit material and structural bend-twist couplings in the main spar to induce appropriate differential blade twist, section by section, while bending flap-wise.

Keywords: Wind turbine blade design; Aeroelastic tailoring; Yielded power maximisation (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214007427
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:73:y:2014:i:c:p:15-24

DOI: 10.1016/j.energy.2014.06.044

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:73:y:2014:i:c:p:15-24