EconPapers    
Economics at your fingertips  
 

Detailed comparative study regarding different formulae of predicting the iron losses in a machine excited by non-sinusoidal supply

Eyhab El-Kharashi

Energy, 2014, vol. 73, issue C, 513-522

Abstract: Variable-speed drives in any machine provide an accurate control and high-energy efficiency. More and more often machines are excited by non-sinusoidal voltages. Predicting the amount of iron losses in non-sinusoidal excitation is important. The paper aims to achieve accurate efficiency estimation by presenting a new modified calculation method to predict the iron losses. In a switched reluctance motor, the iron losses can't be ignored, it has considered value. This paper presents conventional and modified Steinmetz formulae for the estimation of the iron losses. The conventional Steinmetz formula consists of three terms: hysteresis, eddy current and anomalous losses. The equations of hysteresis and eddy current losses depend mainly on the value of the peak flux density. The reason to modify the Steinmetz formula is to avoid the need of knowing the peak flux density and the anomalous losses in accurate figures. The paper also explains and clarifies the methods of using both the conventional as well as the modified Steinmetz formulae in accurate calculation of the iron losses in different sections of the magnetic circuit. For both formulae, a comparison is made between the distributions of the iron losses in different parts of the magnetic circuit and the efficiencies.

Keywords: Steinmetz formulae; Iron losses; Adaptive finite element; Matlab/Simulink; Switched reluctance motor; Efficiency (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421400749X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:73:y:2014:i:c:p:513-522

DOI: 10.1016/j.energy.2014.06.050

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:73:y:2014:i:c:p:513-522