EconPapers    
Economics at your fingertips  
 

An unequivocal normalization-based paradigm to solve dynamic economic and emission active-reactive OPF (optimal power flow)

Mahdi Pourakbari-Kasmaei, Marcos J. Rider and José R.S. Mantovani

Energy, 2014, vol. 73, issue C, 554-566

Abstract: This paper presents a straightforward compromising methodology of dynamic economic and emission AROPF (active-reactive optimal power flow). AROPF considering environmental effects is a highly nonlinear problem, and the dynamic consideration of such problems makes it even more complicated and extra-high nonlinear; find an appropriate compromising solution for such problems is considered as a complicated task. In one hand the traditional compromising methodologies cannot find an acceptable compromise point for large-scale systems, and on the other hand metaheuristic methods are time consuming. In this paper an UNBP (unequivocal normalization-based paradigm) is proposed, while instead of maximum output-based pollution control cost, an adaptive pollution control cost is used to consider the system topology in dynamic scheduling and under various system conditions such as normal, outage, and critical conditions. By using a normalization process and adaptive pollution control cost, a uniform compromising procedure is obtained. Three case studies such as 14-bus, 30-bus, and 118-bus IEEE test systems are conducted and results are compared to those reported in literature. Results confirm the potential, effectiveness, and superiority of the proposed UNBP compared to traditional and heuristic-based multi-objective optimization techniques.

Keywords: Active-reactive optimal power flow; Normalization-based optimization; Environmental effect; Adaptive pollution control cost; Contingency (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214007567
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:73:y:2014:i:c:p:554-566

DOI: 10.1016/j.energy.2014.06.057

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:73:y:2014:i:c:p:554-566