EconPapers    
Economics at your fingertips  
 

Multi-criteria optimization model to investigate the energy waste of off-road vehicles utilizing soil bin facility

Hamid Taghavifar, Aref Mardani and Haleh Karim-Maslak

Energy, 2014, vol. 73, issue C, 762-770

Abstract: The main objective of the present study was to determine the energy use efficiency of soil-wheel interaction in a soil bin testing facility. Input parameters were velocity at three levels (i.e. 0.7, 1.4 and 2 m/s), tire inflation pressure at three levels (i.e. 100, 200 and 300 kPa) and wheel load at five levels (i.e. 1, 2, 3, 4, and 5 kN) where the output was the energy waste of soil-tire interface. The potential of nonparametric technique of DEA (data envelopment analysis) and hybrid statistical-mathematical modeling approach of RSM (response surface methodology) were assessed in the present investigation. Response surface contours were constructed to determine the optimum conditions for the objective parameter. The present investigation spearheads the practice of DEA and RSM approaches in the optimization of energy waste of off-road vehicles. The findings revealed that RSM with optimized value of 5.7175 J, which corresponds to wheel load of 1 kN, velocity of 0.7 m/s, and tire inflation pressure of 150 kPa, is achievable. Additionally, input-oriented option of DEA resulted in the mean efficiency of 0.4379. Moreover, contribution of each input factor for energy saving was assessed by DEA approach.

Keywords: DEA; RSM; Efficiency; Energy waste; Soil-wheel interaction (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214007804
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:73:y:2014:i:c:p:762-770

DOI: 10.1016/j.energy.2014.06.081

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:73:y:2014:i:c:p:762-770