EconPapers    
Economics at your fingertips  
 

Modeling and optimization of a chiller plant

Xiupeng Wei, Guanglin Xu and Andrew Kusiak

Energy, 2014, vol. 73, issue C, 898-907

Abstract: A data-driven approach is utilized to model a chiller plant that has four chillers, four cooling towers, and two chilled water storage tanks. The chillers have varying energy efficiency. Since the chiller plant model derived from data-driven approach is nonlinear and non-convex, it is not practical to solve it by using the traditional gradient-based optimization algorithm. A two-level intelligent algorithm is developed to solve the model aiming at minimizing the total cost of the chilled water plant. The proposed algorithm can effectively search the optimum under the non-convex and nonlinear situation. A simulation case is conducted and the corresponding results are discussed.

Keywords: Two-level intelligent algorithm; Chiller plant; Neural network; Data-driven model (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214008019
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:73:y:2014:i:c:p:898-907

DOI: 10.1016/j.energy.2014.06.102

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:73:y:2014:i:c:p:898-907