Uncertainty handling using neural network-based prediction intervals for electrical load forecasting
Hao Quan,
Dipti Srinivasan and
Abbas Khosravi
Energy, 2014, vol. 73, issue C, 916-925
Abstract:
The complexity and level of uncertainty present in operation of power systems have significantly grown due to penetration of renewable resources. These complexities warrant the need for advanced methods for load forecasting and quantifying uncertainties associated with forecasts. The objective of this study is to develop a framework for probabilistic forecasting of electricity load demands. The proposed probabilistic framework allows the analyst to construct PIs (prediction intervals) for uncertainty quantification. A newly introduced method, called LUBE (lower upper bound estimation), is applied and extended to develop PIs using NN (neural network) models. The primary problem for construction of intervals is firstly formulated as a constrained single-objective problem. The sharpness of PIs is treated as the key objective and their calibration is considered as the constraint. PSO (particle swarm optimization) enhanced by the mutation operator is then used to optimally tune NN parameters subject to constraints set on the quality of PIs. Historical load datasets from Singapore, Ottawa (Canada) and Texas (USA) are used to examine performance of the proposed PSO-based LUBE method. According to obtained results, the proposed probabilistic forecasting method generates well-calibrated and informative PIs. Furthermore, comparative results demonstrate that the proposed PI construction method greatly outperforms three widely used benchmark methods.
Keywords: Load forecasting; Prediction interval; Neural network; Uncertainty; Particle swarm optimization (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (35)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214008032
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:73:y:2014:i:c:p:916-925
DOI: 10.1016/j.energy.2014.06.104
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().