EconPapers    
Economics at your fingertips  
 

Performance advancement of solar air-conditioning through integrated system design for building

K.F. Fong and C.K. Lee

Energy, 2014, vol. 73, issue C, 987-996

Abstract: This study is to advance the energy performance of solar air-conditioning system through appropriate component integration from the absorption refrigeration cycle and proper high-temperature cooling. In the previous studies, the solar absorption air-conditioning using the working pair of water – lithium bromide (H2O–LiBr) is found to have prominent primary energy saving than the conventional compression air-conditioning for buildings in the hot-humid climate. In this study, three integration strategies have been generated for solar cooling, namely integrated absorption air-conditioning; integrated absorption-desiccant air-conditioning; and integrated absorption-desiccant air-conditioning for radiant cooling. To realize these ideas, the working pair of ammonia – water (NH3–H2O) was used in the absorption cycle, rather than H2O–LiBr. As such, the evaporator and the condenser can be separate from the absorption refrigeration cycle for the new configuration of various integrated design alternatives. Through dynamic simulation, the year-round primary energy saving of the proposed integration strategies for solar NH3–H2O absorption air-conditioning systems could be up to 50.6% and 25.5%, as compared to the conventional compression air-conditioning and the basic solar H2O–LiBr absorption air-conditioning respectively. Consequently, carbon reduction of building air-conditioning can be achieved more effectively through the integrated system design in the hot and humid cities.

Keywords: Solar air-conditioning; Absorption refrigeration; Desiccant cooling; Radiant cooling; Thermodynamic analysis; Energy saving (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214008202
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:73:y:2014:i:c:p:987-996

DOI: 10.1016/j.energy.2014.06.114

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:73:y:2014:i:c:p:987-996