EconPapers    
Economics at your fingertips  
 

Laboratory investigation of hydraulic fracture networks in formations with continuous orthogonal fractures

Tie-gang Fan and Guang-qing Zhang

Energy, 2014, vol. 74, issue C, 164-173

Abstract: Researchers have recently realized that hydraulic fracture networks are significant for the exploitation of unconventional reservoirs (tight gas, shale gas, coalbed methane, etc.). Studies have shown that slickwater fracturing treatments can create complex fractures that increase the ‘stimulated reservoir volume’ in naturally fractured formations. However, the influence of the created hydraulic fracture network is not well understood. Laboratory experiments are proposed to study the evolution of hydraulic fracture networks in naturally fractured formations with specimens that contain two groups of orthogonal cemented fractures. The influence of dominating factors was studied and analyzed, with an emphasis on natural fracture density and injection rate. We concluded that hydraulic fracture networks are formed by the interactive process between the reopening and connecting of the natural fractures through slickwater fracturing in the specimens, indicated by frequent pressure fluctuations. The spatial envelope of the fracture network is an approximate ellipsoid with the major axis deviating from the orientation of the maximum horizontal stress. It is suggested from the pressure curve that great natural fracture density and high injection rates tend to raise the treatment pressure and the pressure profiles could reflect different characteristics of extending behaviors.

Keywords: Hydraulic fracture network; Injection rate; Natural fracture density; Naturally fractured formation; Simulation experiment (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214006033
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:74:y:2014:i:c:p:164-173

DOI: 10.1016/j.energy.2014.05.037

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:74:y:2014:i:c:p:164-173