NOx emissions and NO2- formation in thermal energy storage process of binary molten nitrate salts
Xiaolan Wei,
Yan Wang,
Qiang Peng,
Jianping Yang,
Xiaoxi Yang and
Jing Ding
Energy, 2014, vol. 74, issue C, 215-221
Abstract:
Referring to the national environmental protection standard of PR China, HJ479-2009, NOx emissions and the effect of 45# carbon steel (1045, ASTM) on it in thermal energy storage (TES) process of binary molten nitrate (BMN) salts (a eutectic salt mixture named as solar salt with the component of 60% NaNO3 and 40% KNO3) are discussed in this paper. The accumulative absorption concentrations of NOx emissions in tail gases of molten salts heated at different temperatures were measured to study the thermal decomposition situation of molten salts in TES process. Furthermore, the concentrations of nitrite ion in molten salts samples were determined and chemical thermodynamic calculations of related reactions were done to explain the results. The research shows that BMN salts contained in silica or carbon steel container in the air under certain conditions can release NOx in its use of temperature range. The concentrations of NOx emissions and nitrite ion in molten salts both increase with the rise of the temperature. After contacting with 45# carbon steel, the total concentrations of NOx emissions and nitrite ion in molten salts increased, which may be caused by Fe component in the carbon steel.
Keywords: Binary molten nitrate salts; NOx emissions; Carbon steel (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214006318
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:74:y:2014:i:c:p:215-221
DOI: 10.1016/j.energy.2014.05.064
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().