EconPapers    
Economics at your fingertips  
 

Study on a gas-steam combined cycle system with CO2 capture by integrating molten carbonate fuel cell

Liqiang Duan, Jingnan Zhu, Long Yue and Yongping Yang

Energy, 2014, vol. 74, issue C, 417-427

Abstract: This paper studies a gas-steam combined cycle system with CO2 capture by integrating the MCFC (molten carbonate fuel cell). With the Aspen plus software, this paper builds the model of the overall MCFC-GT hybrid system with CO2 capture and analyzes the effects of the key parameters on the performances of the overall system. The result shows that compared with the gas-steam combined cycle system without CO2 capture, the efficiency of the new system with CO2 capture does not decrease obviously and keeps the same efficiency with the original gas steam combined cycle system when the carbon capture percentage is 45%. When the carbon capture percentage reaches up to 85%, the efficiency of the new system is about 54.96%, only 0.67 percent points lower than that of the original gas-steam combined cycle system. The results show that the new system has an obvious superiority of thermal performance. However, its technical economic performance needs be improved with the technical development of MCFC and ITM (oxygen ion transfer membrane). Achievements from this paper will provide the useful reference for CO2 capture with lower energy consumption from the traditional power generation system.

Keywords: Gas-steam combined cycle; ITM; MCFC; Aspen plus; CO2 emissions (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214008287
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:74:y:2014:i:c:p:417-427

DOI: 10.1016/j.energy.2014.07.006

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:74:y:2014:i:c:p:417-427