Study of mixtures based on hydrocarbons used in ORC (Organic Rankine Cycle) for engine waste heat recovery
Gequn Shu,
Yuanyuan Gao,
Hua Tian,
Haiqiao Wei and
Xingyu Liang
Energy, 2014, vol. 74, issue C, 428-438
Abstract:
For high temperature ORC (Organic Rankine Cycle) used in engine waste heat recovery, it's very critical to select a high temperature working fluid. HCs (Hydrocarbons) usually have excellent cycle performance, but the flammability limits their practical application. Considering that some retardants can be used to suppress flammability, the paper presents an application of mixtures based on hydrocarbons blending with refrigerant retardants to engine waste heat ORC. Three pure hydrocarbons (cyclopentane, cyclohexane, benzene) and two retardants (R11, R123) are selected for combination. Thermal efficiency and exergy loss are selected as the main objective functions. Based on thermodynamic model, the effects of retardants mass fraction, evaporation temperature and IHE (internal heat exchanger) are investigated. Results show that zeotropic mixtures do have higher thermal efficiency and lower exergy loss than pure fluids, at a certain mixture ratio. There exists the OMR (optimal mixture ratio) for different mixtures, and it changes with the evaporation temperature. When adding IHE to system, cycle performance could be obviously improved, and for benzene/R11 (0.7/0.3), the efficiency growth is about 7.12%∼9.72%. Using it, the maximum thermal efficiency of the system can achieve 16.7%, and minimum exergy loss is only 30.76 kW.
Keywords: Engine waste heat; Organic Rankine Cycle (ORC); Mixtures based on hydrocarbons; Thermodynamic analysis (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (30)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214008299
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:74:y:2014:i:c:p:428-438
DOI: 10.1016/j.energy.2014.07.007
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().