Exergy driven process synthesis for isoflavone recovery from okara
Lena Jankowiak,
Jochem Jonkman,
Francisco J. Rossier-Miranda,
Atze Jan van der Goot and
Remko M. Boom
Energy, 2014, vol. 74, issue C, 471-483
Abstract:
Isoflavones, found in soybeans and other members of the fabaceae family, are considered bioactive components of high economic value. An opportunity would be to separate isoflavones from okara, the by-product of the soymilk and tofu production. Such a process would not only valorise that side-stream but also, and maybe more importantly, reduce the waste of high quality bioactive compounds. Extraction is an important part during the recovery of isoflavones from okara and was conceptually designed in this work. Due to environmental constraints, ethanol and water were the only solvents considered in this work for extraction of isoflavones. Different process scenarios were established and assessed by solvent footprinting, energy use, and exergy analysis. Simulation of the various process scenarios showed that distillation and the loss of ethanol in the spent okara represent the largest inefficiencies regarding exergy waste and energy usage. Furthermore, even though the use of ethanol leads to a higher recovery, water is in most cases the preferred solvent due to the high exergetic cost of losing some ethanol in the spent okara and during distillation.
Keywords: Sustainability; Food process design; By-product utilisation; Polyphenols; Process efficiency; Exergy analysis (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214008354
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:74:y:2014:i:c:p:471-483
DOI: 10.1016/j.energy.2014.07.013
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().