EconPapers    
Economics at your fingertips  
 

Economic comparison of ORC (Organic Rankine cycle) processes at different scales

Dominik Meinel, Christoph Wieland and Hartmut Spliethoff

Energy, 2014, vol. 74, issue C, 694-706

Abstract: The utilization of low temperature heat sources, e.g. waste heat, for power generation in Organic Rankine Cycles has become more and more important in recent decades. In this work, exhaust gas as the heat transfer medium is considered. Five organic working fluids in three cycle designs at three different scales are investigated in Aspen Plus V7.3. Additionally, two different constraints have been applied to the exhaust gas temperature: A minimum of 180 °C in order to avoid the acid dew point and a minimal temperature approach, where the pinch point in the exhaust gas heat exchanger is fixed at 10 K. The investigated turbine-bleeding process with regenerative pre-heating benefits higher exhaust gas outlet temperatures for further combined heat and power applications in conjunction with enhanced system performances. Also noteworthy is the lower total heat exchanger area of the process compared to the reference designs. Economic analyses are carried out in order to outline the economic merits of the turbine-bleeding cycle.

Keywords: Organic rankine cycle; Economic analysis; Cycle configuration; Parameter studies (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214008585
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:74:y:2014:i:c:p:694-706

DOI: 10.1016/j.energy.2014.07.036

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:74:y:2014:i:c:p:694-706