EconPapers    
Economics at your fingertips  
 

Influence of different swirl vane angles of over fire air on flow and combustion characteristics and NOx emissions in a 600 MWe utility boiler

Shuguang Ti, Zhichao Chen, Zhengqi Li, Yiquan Xie, Yunlin Shao, Qiudong Zong, Qinghua Zhang, Hao Zhang, Lingyan Zeng and Qunyi Zhu

Energy, 2014, vol. 74, issue C, 775-787

Abstract: Measurements were taken for a 600-MWe wall-fired pulverized-coal utility boiler that was retrofitted with centrally fuel rich swirl coal combustion burners and two levels of OFA (over-fire air) technology. Using various swirl air vane angle settings a three-component particle-dynamics anemometer was used to measure flow characteristics in the near-OFA region in the laboratory together with gas temperature and species concentrations in the OFA and burner region in the utility boiler. The results show that, with decreasing swirl air vane angle, the penetrating depth of the jet stream decreases and the divergent angle increases. Flue gas temperature increases as the OFA swirl air vane angle increases from 25° to 45°. The O2 concentration decreases with decreasing swirl air vane angles. After retrofitting, the thermal efficiency of the boiler shows a slight increase in each case of 0.06–0.23%, with the exception of a swirl vane angle of 45°, where the thermal efficiency of the boiler decreases by 0.38%. NOx emissions are reduced when compared with those prior to the retrofitting, with OFA swirl air vane angles of 25°, 35°, 45° and 90° providing reductions of 240, 273, 294 and 319 mg/m3 (O2 = 6%), respectively.

Keywords: PDA (particle-dynamics anemometer); OFA (over-fire air); Low NOx burner; Pulverized-coal (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214008718
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:74:y:2014:i:c:p:775-787

DOI: 10.1016/j.energy.2014.07.049

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:74:y:2014:i:c:p:775-787