EconPapers    
Economics at your fingertips  
 

Heating, cooling, and electrical load forecasting for a large-scale district energy system

Kody M. Powell, Akshay Sriprasad, Wesley J. Cole and Thomas F. Edgar

Energy, 2014, vol. 74, issue C, 877-885

Abstract: Load forecasting is critical for planning and optimizing operations for large energy systems on a dynamic basis. As system complexity increases, the task of developing accurate forecasting models from first principles becomes increasingly impractical. However, for large campuses with many buildings, the large sample size has a smoothing effect on the data so that aggregate trends can be predicted using empirical modeling techniques. The distinguishing features of this work are the large scale of the energy system (a college campus with approximately 70,000 students and employees) and the simultaneous forecasting of heating, cooling, and electrical loads. This work evaluates several different models and discusses each model's ability to accurately forecast hourly loads for a district energy system up to 24 h in advance using weather and time variables (month, hour, and day) as inputs. A NARX (Nonlinear Autoregressive Model with Exogenous Inputs) shows the best fit to data. This time series model uses a neural network with recursion so that measured loads can be used as a reference point for future load predictions. 95% confidence limits are used to quantify the uncertainty of the predictions and the model is validated with measured data and shown to be accurate for a 24 h prediction.

Keywords: Load forecasting; District energy; Combined heat and power; Energy storage; Distributed energy; Microgrid (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (55)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421400886X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:74:y:2014:i:c:p:877-885

DOI: 10.1016/j.energy.2014.07.064

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:74:y:2014:i:c:p:877-885