Spectrally corrected direct normal irradiance based on artificial neural networks for high concentrator photovoltaic applications
Eduardo F. Fernández and
Florencia Almonacid
Energy, 2014, vol. 74, issue C, 941-949
Abstract:
The electrical characterization of a HCPV (high concentrator photovoltaic) module or system is key issue for systems design and energy prediction. The electrical modelling of an HCPV module shows a significantly greater level of complexity than conventional PV (photovoltaic) technology due to the use of multi-junction solar cells and optical devices. An interesting approach for the modelling of an HCPV module is based on the premise that the electrical parameters of an HCPV module can be obtained from the spectrally corrected direct normal irradiance and the cell temperature. The advantage of this approach is that the spectral effects of an HCPV device are quantified by adjusting only the incident direct normal irradiance. The aim of this paper is to introduce a new method based on artificial neural networks to spectrally correct the direct normal irradiance for the electrical characterization of an HCPV module. The method takes into account the main atmospheric parameters that influence the performance of an HCPV module: air mass, aerosol optical depth and precipitable water. Results show that the proposed method accurately predicts the spectrally corrected direct normal irradiance with a RMSE (root mean square error) of 2.92% and a MBE (mean bias error) of 0%.
Keywords: Spectrally corrected direct normal irradiance; High concentrator photovoltaic technology; Electrical characterization; Artificial neural networks (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214008974
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:74:y:2014:i:c:p:941-949
DOI: 10.1016/j.energy.2014.07.075
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().