Experimental study on the influence of oxygen content in the combustion air on the combustion characteristics
Petr Bělohradský,
Pavel Skryja and
Igor Hudák
Energy, 2014, vol. 75, issue C, 116-126
Abstract:
This study was focused on the experimental investigation of the very promising combustion technology called as the oxygen-enhanced combustion (OEC), which uses the oxidant containing higher proportion of oxygen than in the atmospheric air, i.e. more than 21%. The work investigated and compared the characteristics of two OEC methods, namely the premix enrichment and air-oxy/fuel combustion, when the overall oxygen concentration was varied from 21% to 46%. The combustion tests were performed with the experimental two-gas-staged burner of low-NOx type at the burner thermal input of 750 kW for two combustion regimes – one-staged and two-staged combustion. The oxygen concentration in the flue gas was maintained in the neighborhood of 3% vol. (on dry basis). The aim of tests was to assess the impact of the oxidant composition, type of OEC method and fuel-staging on the characteristic combustion parameters in detail. The investigated parameters included the concentration of nitrogen oxides (NOx) in the flue gas, flue gas temperature, heat flux to the combustion chamber wall, and lastly the stability, shape and dimensions of flame. It was observed that NOx emission is significantly lower when the air-oxy/fuel method is used compared to the premix enrichment method. Moreover, when the fuel was staged, NOx emission was below 120 mg/Nm3 at all investigated oxygen flow rates. Increasing oxygen concentration resulted in higher heating intensity due to higher concentrations of CO2 and H2O. The available heat at 46% O2 was higher by 20% compared with that at 21% O2.
Keywords: Oxygen-enhanced combustion; Staged combustion; Nitrogen oxides; Heat flux; Flame pattern (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214004393
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:75:y:2014:i:c:p:116-126
DOI: 10.1016/j.energy.2014.04.026
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().